A verdade feia por trás de todos esses dados
Estamos na era dos dados. Nos últimos anos, muitas empresas já começaram a coletar grandes quantidades de dados sobre seus negócios. Por outro lado, muitas empresas estão apenas começando. Se você trabalha em uma dessas empresas, pode estar se perguntando o que pode ser feito com todos esses dados.
Que tal usar os dados para treinar um algoritmo de aprendizado de máquina supervisionado (ML – Machine Learning)? O algoritmo ML poderia executar a mesma tarefa de classificação que um ser humano faria, muito mais rápido! Poderia reduzir custos e ineficiências. Pode funcionar com os dados combinados, como imagens, documentos de texto e apenas números simples. Poderia fazer todas essas coisas e até obter essa vantagem sobre a concorrência.
No entanto, antes que você possa treinar qualquer modelo supervisionado decente, você precisa de dados básicos da verdade. Geralmente, os modelos supervisionados de ML são treinados em registros de dados antigos que já estão rotulados de alguma forma. Os modelos treinados são aplicados para executar previsões de rótulos em novos dados. E esta é a verdade feia: antes de prosseguir com qualquer treinamento de modelo, qualquer definição de problema de classificação ou qualquer entusiasmo adicional na coleta de dados, você precisa de um conjunto suficientemente grande de registros de dados rotulados corretamente para descrever seu problema. E a rotulagem de dados – especialmente em uma quantidade suficientemente grande – é … cara.